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An Adjoint Variable Method for Structural Design Sensitivity 
Analysis of a Distinct Eigenvalue Problem 

Tae  Hee  Lee* 
(Received November 30, 1998) 

New adjoint variable method for design sensitivity analysis of distinct eigenvlaues and 
eigenvectors is presented. In the viewpoint of efficiency for the design sensitivity analysis of 
eigenvectors especially, the developed adjoint variable method is required to compute adjoint 
variables from simultaneous linear equations, the so-called adjoint equations, instead of linear 
combination of eigenvectors. Once we obtain the adjoint variables, design sensitivity analysis of 
response function that is given in terms of eigenvalues, eigenvectors and design variables can be 
computed directly. In this way, design sensitivity analysis of eigenvectors can be obtained by 
using eigenvalues and their corresponding eigenvectors of the mode being differentiated only. To 
verify the proposed method, numerical examples are demonstrated. This can have considerable 
impact on computer implementation of the developed method in the design sensitivity analysis 
of eigenproblem needed for practical applications. 
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I. Introduct ion 

Eigenproblems are commonly considered in 
structural stability, buckling, noise and vibration 
analyses. Design sensitivity analysis of an eigen- 
problem computes the rate of changes of response- 
dependent function, for instance, eigenvalues and 
eigenvectors, with respect to the perturbation of 
design variables. Design sensitivity analysis is 
also an essential step to systematically improve 
the existing design and to optimize a system with 
the aid of gradient-based optimization techniques 
(Haftka and Adelman 1989; Haug, et al 1986). 

Fox and Kapoor (1968) developed general 
technique to compute design sensitivity of 
eigenvalues for symmetric matrices. However this 
method requires all eigenvalues and eigenvectors 
for the system, which is computationally expen- 
sive for a large-scale problems. Plaut and Hus- 
syin (1973) and Rudisill(1974) developed tbr- 
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mulas for second-order design sensitivity analysis 
of eigenvalues. 

To analyze the design sensitivity of the 
eigenvectors, we can use direct differentiation 
method that differentiates an eigenproblem with 
respect to design variables and solves the simulta- 
neous equation directly for the eigenvector deriva- 
tives (Haug, et at 1986). However, since the 
simultaneous equation is singular, an orthonor- 
reality condition is adapted in the solution proc- 
ess (Jung, et al 1997; Lee and Jung 1997). Nelson 
introduced a normalization condition where the 
largest component of the eigenvector is unity 
(Nelson 1976). Note that Nelson and Lee and 
Jung methods require only the eigenvalues and 
eigenvectors for the modes being differentiated. 

Design sensitivity analysis of eigenvectors can 
also be obtained by the modal method (Fox and 
Kapoor 1968; Rogers 1970) and a modified 
modal method (Wang 1991; Lin, Lim and Wang 
1997), whereby the design derivatives of the 
eigenvectors are expanded in terms of the 
eigenvectors. The modal method approximates 
the derivatives of eigenvectors as a linear combi- 
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nation of eigenvectors. This method can be 

computationally expensive and impractical if 
large number of eigenvectors is needed to accu- 
rately represent the derivatives of eigenvectors. 

The modified modal method is developed to 

reduce the number of eigenvectors needed to 

represent the derivatives by including an addi- 
tional term in the linear combination of 
eigenvectors, where inaccuracy of the approxima- 
tion has been leaded for need of relatively higher 
modes. Review and comparison of several 
methods for design sensitivity analysis of  

eigenvectors have been carried out (Stulter, et al 
1988). Note that the modal methods compute the 

design sensitivity of  state variables instead of the 
design sensitivity of  response functions. 

Proposed new method for calculating deriva- 
tives of eigenvalues and eigenvectors is purely 
adjoint variable method that requires evaluation 
of the adjoint variables from the simultaneous 

system equation, the so-called adjoint equation. 
It is very important to note that the adjoint 
equation requires only the eigenvalues and as- 

sociated eigenveetors of the modes being differ- 
entiated. Once we obtain adjoint variables, we 
can evaluate design sensitivity coefficients of 
response function directly. Theretbre, when the 
dimensions of design variables are larger than the 
number of response functions, the developed 

method is generally more efficient than the direct 
differentiation method and the modal methods. 

Numerical examples are given to verity the devel- 
oped method,Furlher, the developed method can 

be easily implemented into a commercial finite 
element program to carry out the design sensitiv- 
ity analysis of eigenproblems needed for practical 
applications. 

2. Definition of Eigenproblem 

Undamped tree vibration and linear buckling 

analysis lead to the generalized eigenproblem as 
follows: 

Kui=AiMt'i  (I) 

where K represents the stiffness matrix, M repre- 
sents the mass matrix in vibration analysis or 
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geometric stiffness matrix in buckling analysis. 

The eigenvalue A~ and associated eigenvectors ui 

represent the i-th free vibration frequency squar- 
ed and corresponding mode shape vectors, respec- 
tively, in care of buckling problems, the lowest 

eigenvalue A~=-Acr is associated with buckling 
load. 

Since the mode shape is often normalized with 
a symmetric positive definite matrix, we take M 
-orthonormality condition as follows: 

u~.rMuj �9 &j (2) 

where go represents the Kronecker delta and the 
right superscript T denotes the transposition of a 
matrix. 

3. Design Sensitivity Analysis of 
Eigenproblem 

Consider a general response function of an 
eigenproblem represented in terms of eigenvalues, 
eigenvectors, and a design variable as follows: 

g=g(,,],., ul, b) (3) 

where b denotes design variable. It is assumed 
that the response function whose design sensitiv- 
ity needs to be evaluated is continuous and differ- 
entiable with respect to its arguments. 

To develop the adjoint variable method with 
the aid of the variational principle for design 

sensitivity analysis (Arora and Cardoso 1992), 
we first define the augmented function as 

A = g ( A ,  u~, b ) + z r ( K - A ~ M ) u ;  
1 1 

+ y  ( T - T u i M U l )  (4) 

where y and z are the adjoint variables, the so- 
called Lagrange multipliers, for eigenvalues and 
eigenvectors, respectively, which will be deter- 
mined later. 

According to the variational principle for 

design sensitivity analysis, the total design varia- 
tion of the response function can be represented 
as explicit design variation of the augmented 
function given in Eq. (4), i. e., 

d g o 3 A  c)g .ZT(OK , OM'I 
- a b  - a b  T .  I . - a a  ..... a i . a b  j u ,  
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1 rOM 
- 2..yui-8-b ul (5) 

Now the adjoint equation can be obtained by 
requiring the implicit design variation of the 

augmented function in Eq. (4) to vanish. This 
leads to the following equation: 

8g da @ due dAizr(K_AiM ) 0 =  
8/l~ rib ~- 8ui" db db 
du,. ~ .  du,. d,L' du~ 
db - y u : M ~ f o r  V db ' db 

(6) 

where the operator ' �9 ' denotes the inner product. 

Rearranging Eq. (6), we have 

d, t i :Ag_  ~ .  3 . dul  - >  

+ (K--/~,,M)z--yMui] for V d, tidb, dui  
db 
(7) 

where the fact that K and M are symmetric 
matrices is employed. Since Eq. (7) holds tbr 

arbitrary d,~Jdb and du,./db, we have the adjoint 

equations as follows: 

rK-.a,.M -Muql-,] [ au,] 
k -u~rlVl 0 JkyJ= / 8g I (s) 

L - ~ 7 .  j 

It can be observed from Eq. (8) that the coeffi- 

cient matrix is nonsingular if the eigenvlaues are 

distinct and composed of the stiffness and mass 
matrices and the eigenvalue and eigenveclors of 

the i-th mode. The right-hand side of Eq. (8) can 
be given explicitly from the response function. 
Therefore, it is very important to note that the 
adjoint variables for the given response function 
can be evaluated by using the eigenvalaes and 
corresponding eigenvectors of the mode being 
differentiated only. Once we solve the system 

equation of Eq. (8), we substitute the adjoint 

variables into Eq. (5) to obtain the design sensi- 
tivity coefficients of  the response function. More- 
over, when the dimensions of design variables are 
larger than the number of response functions, the 
developed method is generally more efficient than 
the modal methods (Haug, et al 1986). However, 

it must be pointed out that there are more design 
variables comparing with the number of response 

functions in eigenproblems, in general. 

4. E x a m p l e s  

Two numerical examples are illustrated here to 
calculate the design sensitivity coefficients of the 
eigenproblems and compare with those evaluated 

by using exact differentiation or the central finite 
difference method. Throughout the examples, 
eigenvalues, eigenvectors and system equations 

are computed by MATLAB (1994). 

4.1 Undamped four-degree-of-freedom sys- 
tem 

Consider the design sensitivity of the first 
eigenvalue and its corresponding eigenvectors of 

an undamped four-degree-of-freedom system 
(see Fig. 1) with mass and stiffness matrices given 

as follows (Wang 1991): 

 0004100 0il 2 0 1 3 ...... 2 
M= kg " K = X lO t N / m  

0 3  ' 0 - 2  7 - 

0 0  0 0 - 5  
(9) 

where the material constants are as follows: 

[ ml,m2,rm, m4] = [1,2,3,4] ( kg) , 
[kl,k>k3,&] = [2,1,2,5] ( • 105 N / m )  

The response functions whose design sensitiv- 

ities are required are defined as follows: 

gi =/]i 
~ =  ul[l o o o] " 
g~=n~[O 1 o o]~ 
g4=u]'[0 0 1 0] ~' (10) 
g~=ur[0 0 0 1] r 

where gl is the response function for the first 
eigenvalue and g2 through g:~ are response func- 

tions for the elements of the first eigenvectors, 

respectively. Note that ,~1 and ul represent the first 
eigenvalue and the first eigenvector for the given 

ml m2 m3 m4 

Fig. 1 Undamped fbur--degree-of-freedom system. 
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system, respectively. 

We now consider  the design sensitivity analyses 

of the first e igenvalue and eigenvector for the 

fol lowing two cases: 

Case 1 : b = m l ,  i. e., l 000 l c)M _ 0 0 0 , ==-0K (11) 
Ob o o oo = ~  

0 0  

Case 2 : b = k 3 ,  i. e., 

aM - -0  3K 1 - 1 
0b 0b = - 1  1 • 105 (12) 

0 0 

To compute  the design sensitivity of  the first 

eigenvalue,  we first, solve the adjoint  equat ion as 

tbllows: 

.... M u l ] F z ,  1 (13) 
L -.uilM 0 J L y d  = 

I 

Then using Eq. (5), the design sensitivity for the 

first eigenvalue is given for two cases as follows: 

Case 1: 

YEt TOM 1 r0M 
r ib--  ,~1 z1 ~ - t '  1 - ~ -y l  tll ~ - u  1 (14) 

Case 2: 

dg, _ z r a K  (15) 
db -- .l ~ - u ,  

To evaluate the design sensitivity for the 

eigenvectors, for instant g> ad jo in t  equat ion  and 

sensitivity expressions become as follows: 

[ ' K - - A 1 M -  Mu,][-z2] = ~ (16) 
L - ulrM 0 J [-Ya] 

Case I: 

dg2 r0M 1 TOM -- ,a.lzz~.-ul -- (17) db 2 - y 2 u l - d u l  

Case 2: 

(4'g~ ~aK (18) i)b . . . .  z2.a)5-u~ 

Note  that the first eigenvalue and its correspond-  

ing eigenvectors are only employed  to evaluate 

the design sensitivity coefficient of  the first ele- 

ment of the first eigenvector.  Similar ly  we can 

compute  the design sensitivity for the other ele- 

ments of  the first eigenvector.  

The design sensitivity coefficients of  the first 

eigenvalue and eigenvector for the two cases are 

given in Table  1. These results show very good 

agreement with the exact derivatives.  It is impor-  

tant  to note that  the firs[ e igenvalue and corre- 

sponding  eigenvector are on ly  used for design 

sensitivity analysis  of  the first e igenvalue and 

eigenvector in the deve loped  adjoint  var iable  

method.  

4.2 Cantilever beam 
Consider  the design sensitivity analysis  for 

eigenvlaues and eigenvectors of  a un i form- th ick-  

Table 1 comparison of design sensitivity coefficients of the first eigenvalue and eigenvectors with exact 

derivatives 

Case 1 

Exact AVM 

dAi/db -48.622780 -48.622780 

dut 
db 

0.001617 0.001617 

Case 2 

-0.000565 -0.000565 0.024517 0.024517 

-0.001493 --0.001493 -0.006397 -0.006397 

-0.001712 -0.001712 -0.005160 -0.005160 

520.823568 520.823568 

0.008497 0.008497 

Exact AVM 
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Fig. 2 

Table 2 

~L ~L ~L ~L o 

, -  ........ ; ........ 

1 2 3 4 5 
i n n i i 

Cantilever beam with variable widths and its 
finite element model. 

First three eigenvlaues and eigenvectors of 

the cantilever beam 

Ut 

Mode 1 

4.361e2 

4.4857 

-3.2870 

2.8643 

-3.1137 

1.4228 

-2.5229 

0.3937 

Mode 2 

8.613e3 

-5.3462 

11.1978 

-0.1909 

7.8790 

2.1465 

0.7027 

1.2395 

Mode 3 

5.414e4 

5.4658 

-20.1031 

-2.2890 

4,1895 

-0.2207 

8.9563 

1.9728 

-1.4587 -3.4880 -2.5454 

ness-canti lever beam with variable widths as 

shown in Fig. 2. Since the beam is divided into 

four finite elements, there are eight degrees of  

freedom for this finite element model, where axial 

mot ion  is assumed to be negligible. The design 

variables are chosen three widths of  the beam, i. 

e., b = l-bl b2 bsl r. 

The material  constants  for the cantilever beam 

are as follows: 

E = 2 0 0 •  109 N / m  2, p = 7 8 0 0 k g / m  "~ 

The geometric properties are taken to be 

L = 0 . 5  m, b ,=0.01 m, b2=0.02 m, b s - 0 . 0 3  m, 

and b4=0.04 m, respectively, and the thickness of 

the beam is taken to be t = 0 . 0 0 1 m .  It is assumed 

that the node 5 is fixed. Table  2 shows 

eigenvalues and eigenvectors for the first three 

modes. 

The design sensitivity analysis of eigenvalues 

and eigenvectors of  the cantilever beam are car- 

Tae Hee Lee 

Table 3 Des ign  sens i t iv i ty  coef f ic ien ts  of 

eigenvalues and their comparison with cen- 

tral finite difference method 

AVMw R (%) 

A1,2" -230.8478 100.00 

21.2 -66.0417 100.00 

Al,s 25.3517 100.01 

~2,1 -2485.9099 100.01 

A2,2 1064,0475 100.00 

Az,8 -542.4464 100.00 

Asa -556.3837 99.97 

~8,~ -886.1520 100.01 

A3,3 50.8896 99.93 

* A~.;=-d~,/dbl 

w AVM " Adjoint Variable Method 

Table 4 Design sensitivity coefficients of some ele- 

ments of eigenvectors with respect to design 

variable bl and their comparison with cen- 

tral finite difference method 

AVM R(%) 

una -112.1784 100.00 

Ul4,1 64,0150 100,00 

uls,x -41.9889 100.00 

u18,1 45.3606 100.00 

U22,1 --491.5451 100.01 

u23,~ 110.4510 100.00 

u26,1 - 125.2893 99.99 

uzTa -5.9978 99.99 

ual,t - 14.1984 100.00 

u3a,l -6.5923 100.00 

Ua~,l 17.4019 ] 00.00 

-12.5400 100.01 U38,1 

ried out by using the developed adjoint  variable 

method. The design sensitivity of the eigenvlaues 

given in Table  3 tells us that reducing the width 

b. will increase the first frequency of the cantile- 

ver beam, However increasing the width b2 will 
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increase the second frequency but decrease the 
first and third frequencies of the cantilever beam. 

Tables 3 and 4 show the design sensitivity 

restdts and comparison with those calculated by 
the central finite difference method. The design 
perturbation for the finite difference method is 
chosen as 1% of the design variable. The design 

sensitivity coefficients of  eigenvalues and 

eigenvectors obtained by applying the developed 
adjoint variable method are in good agreement 

with those computed by using the central finite 
difference method. In the presenting results, we 

give the ratio R between the design sensilivity 
coefficients predicted by the adjoint variable 

method (dg/db) and those by the central finite 
difference method (zlg/zlb) as follows: 

R . .  dx/._d~ 
-- dg/db • 100(%), 

,dg--.~-Fg (b + Ab) - . g ( b - A b ) ]  (19) 

where g- represents a response quantity whose 
design sensitivity coefficient is calculated. A ratio 
of 100% means that the predicted design sensitiv- 

ity coefficient matches exactly with that computed 

by the finite difference method. 

5. Concluding Remarks 

Design sensitivity analysis of a distinct 

eigenvaluc problem based on adjoint variable 
method is presented. Adjoint equation for the 

response quantity defined in terms of  eigenvalues 
and eigenvectors is obtained by requiring the 

implicit design variations of the augmented func- 
tion to vanish. Once we calculate the adjoint 
variables from the linear systems &equations, we 

can evaluate the design sensitivity coefficients of 
the response function. Numerical examples are 
given to calculate the design sensitivity coeffi- 

cients of the eigenproblems and verify the accu- 

racy and efficiency of the developed method. 
Based on the study on design sensitivity analy- 

sis of eigenproblem, we can conclude as follows: 
(1) Pure adjoint variable method for design 

sensitivity analysis of eigenproblem is proposed. 
(2) When the dimensions of design variables 

are larger than the number of response functions, 
the developed adjoint variable method is more 

efficient than the modal methods. 
(3) The proposed adjoint variable method for 

design sensitivity of an eigenvector can be 
computed by using the associated eigenvalue and 

its corresponding eigenvector instead of linear 

combination of some eigenvectors. 

(4) Design sensitivity analysis of eigenprob- 
lems can easily be perlbrmed outside of a com- 

mercial finite element analysis program. 
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